+ Materi Rumus Barisan Dan Deret Geometri Lengkap -Full Pembahasaanya-Rumus matematika untuk tingkat dasar SD ,SMP ,SMA dan SMK , mungikin sebagian anak merasa sulit untuk mempelajarinya Trik Rumus Singkap MIPA terutama saat kelas 7 pertama. Karena dikelas itu ada peralihan anatara SD dan SMP mungkin sedikit banyaknya rumusnya banyak dilupakan untuk itu berbagai konsep bangun ruang lengkap dan perbandingan segitiga sin cos tan mungkin perlu anda pelajari lagi. Atau mungkin anak harus sedikit mengingat mengenai datar akar aljabar kuadrat aritmatika dan geometri pangkat , nah semua itu akan dibahas dan diulas lagi.
Untuk itu ada baiknya mari kita membuka lagi tentang algoritma rumusnya biar kita tidak kesulitan dalam mengikiti pejaran + Materi Rumus Barisan Dan Deret Geometri Lengkap -Full Pembahasaanya yang diberikan oleh bapak atau ibu guru. Dan memang bagi yang belum tahu cara mudah atau rumus singkatnya sering kali dibuat kesulitan untuk memahaninya. Padahal rumus itu bisa kita persingkat sesuai dengan istilah-istilah yang biasa kita temukan. Sebagai mana konsep bimbel yang sekarang ini lebih mengedepankan pemahaman logik sederhana sesuai dengan keaadan atau ruang linkup, sehingg anak lebih mudah dan senang dalam mempelajarinya.
Namun tahukan anda jika hal tersebut, mungkin jarang ditemukan di sekolah-sekolah formal yang mengajarkan rumus + Materi Rumus Barisan Dan Deret Geometri Lengkap -Full Pembahasaanya sesuai dengan cara interaktif murid dan pembingbing. Sering kali kita dibuat bingung karen banyaknya konsep yang jelimet atau rumit yang diajarkan. Nah disini kita akan membahasnya lebih mudah dan simpel, sesuai moto kami Rumus Mudah Dan Murah
Oke langsung saja kita bahasnya + Materi Rumus Barisan Dan Deret Geometri Lengkap -Full Pembahasaanya pembahasanya biar tidak bertele-tele, dan simaknya dibahwah ini:
Baca juga:
Rumus Barisan dan Deret Geometri - Di dalam matematika terdapat dua jenis barisan dan deret. Yang pertama adalah barisan dan deret aritmatika dan yang kedua adalah barisan dan deret geometri. Dalam artikel sebelumnya telah disampaikan materi mengenai Barisan dan Deret Aritmatika, maka kali ini materi yang akan dibahas difokuskan kepada penjelasan mengenai definisi dan rumus-rumus yang digunakan dalam barisan dan deret geometri.
Pengertian dan Rumus Barisan Geometri Barisan geometri didefinisikan sebagai barisan yang tiap-tiap sukunya didapatkan dari hasil perkalian sebelumnya dengan sebuah konstanta tertentu.
Contoh Barisan Geometri
3, 9, 27, 81, 243, ...
Barisan di atas merupakan contoh barisan geometri dimana setiap suku pada barisan tersebut merupakan hasil dari perkalian suku sebelumnya dengan konstanta 3. Maka disimpulkan bahwa rasio pada barisan di atas adalah 3. Rasio pada suatu barisan bisa dirumuskan menjadi :
r = ak + 1/ak
dimana ak adalah sembarang suku dari barisan yang ada. Sementara ak+1 adalah suku selanjutnya setelah ak.
Untuk menentukan suku ke-n dari sebuah barisan geometri, kita bisa menggunakan rumus :
Un = arn-1
dimana a merupakan suku awal dan r adalah nilai rasio dari sebuah barisan geometri.
Perhatikan baik-baik penggunaan rumus di atas dalam menyelesaikan soal :
Contoh Soal dan Pembahasan Barisan Geometri
Contoh Soal 1 :
Sebuah bakteri mampu melakukan pembelahan diri menjadi 4 setiap 12 menit. Berapakah jumlah bakteri yang ada setelah 1 jam apabila sebelumnya terdapat 3 buah bakteri?
Penyelesaian :
a = 3
r = 4
n = 1 jam/12 menit = 60/12 = 5
Masukkan ke dalam rumus
Un = arn-1
U5 = 3 x 45-1
= 3 x 256
= 768 bakteri
Pengertian dan Rumus Deret Geometri Deret geometri bisa diartikan sebagai jumlah dari n suku pertama pada sebuah barisan geometri. Jika suku ke-n dari suatu barisan geometri digambarkan dengan rumus : an = a1rn-1, maka deret geometrinya dijabarkan menjadi :
Sn = a1 + a1r + a1r2 + a1r3 + ... + a1rn-1
Apabila kita mengalikan deret geometri di atas dengan -r, lalu kita jumlahkan hasilnya dengan deret aslinya, maka kita akan memperoleh :
Setelah diperoleh Sn - rSn = a1 - a1rn maka kita bisa mengetahui nilai dari suku n pertama dengan cara berikut :
Berdasarkan hasil perhitungan di atas, kita bisa menyimpulkan bahwa rumus jumlah n suku pertama pada sebuah barisan geometri adalah :
Perhatikan cara penggunaan rumus tersebut pada contoh soal berikut ini :
Contoh Soal Deret Geometri
Contoh Soal 2:
Tentukanlah jumlah 8 suku pertama dari barisan geometri 2, 8, 32, ...
Pembahasan :
a = 2
r = 4
n = 8
Sn = a (1-r) / (1-r)
= 2 (1-4) / (1-4)
= 2 (1 - 65536) / (-3)
= 2 (-65535) / (-3)
= 2 x 21845
= 43690
Demikianlah pembahasan materi mengenai Rumus Barisan dan Deret Geometri dilengkapi Dengan Pembahasan Contoh Soal. Semoga kalian bisa memahami pembahasan materi ini dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam menyelesaikan soal-soal yang berkaitan dengan artikel ini.
Selamat belajar dan semoga bermanfaat!
0 komentar:
Posting Komentar