+ Contoh Soal Dan Pembahasan Sistem Persamaan Linear Dua Variabel -Full Pembahasaanya-Rumus matematika untuk tingkat dasar SD ,SMP ,SMA dan SMK , mungikin sebagian anak merasa sulit untuk mempelajarinya Trik Rumus Singkap MIPA terutama saat kelas 7 pertama. Karena dikelas itu ada peralihan anatara SD dan SMP mungkin sedikit banyaknya rumusnya banyak dilupakan untuk itu berbagai konsep bangun ruang lengkap dan perbandingan segitiga sin cos tan mungkin perlu anda pelajari lagi. Atau mungkin anak harus sedikit mengingat mengenai datar akar aljabar kuadrat aritmatika dan geometri pangkat , nah semua itu akan dibahas dan diulas lagi.
Untuk itu ada baiknya mari kita membuka lagi tentang algoritma rumusnya biar kita tidak kesulitan dalam mengikiti pejaran + Contoh Soal Dan Pembahasan Sistem Persamaan Linear Dua Variabel -Full Pembahasaanya yang diberikan oleh bapak atau ibu guru. Dan memang bagi yang belum tahu cara mudah atau rumus singkatnya sering kali dibuat kesulitan untuk memahaninya. Padahal rumus itu bisa kita persingkat sesuai dengan istilah-istilah yang biasa kita temukan. Sebagai mana konsep bimbel yang sekarang ini lebih mengedepankan pemahaman logik sederhana sesuai dengan keaadan atau ruang linkup, sehingg anak lebih mudah dan senang dalam mempelajarinya.
Namun tahukan anda jika hal tersebut, mungkin jarang ditemukan di sekolah-sekolah formal yang mengajarkan rumus + Contoh Soal Dan Pembahasan Sistem Persamaan Linear Dua Variabel -Full Pembahasaanya sesuai dengan cara interaktif murid dan pembingbing. Sering kali kita dibuat bingung karen banyaknya konsep yang jelimet atau rumit yang diajarkan. Nah disini kita akan membahasnya lebih mudah dan simpel, sesuai moto kami Rumus Mudah Dan Murah
Oke langsung saja kita bahasnya + Contoh Soal Dan Pembahasan Sistem Persamaan Linear Dua Variabel -Full Pembahasaanya pembahasanya biar tidak bertele-tele, dan simaknya dibahwah ini:
Baca juga:
Contoh Soal dan Pembahasan Sistem Persamaan Linear Dua Variabel - Dalam artikel sebelumnya Belajar Matematikaku telah menjelaskan materi mengenai Penjelasan Metode Substitusi dan Eliminasi Sistem Persamaan Linear Dua Variabel. Jika kalian sudah mempelajari materi tersebut dengan baik maka kalian akan lebih mudah untuk memahami materi yang akan disampaikan dalam pembahasan kali ini.
Contoh Soal dan Pembahasan Sistem Persamaan Linear Dua Variabel dan Pembahasannya Contoh Soal 1 :
Tentukan penyelesaian dari SPLDV berikut dengan menggunakan metode substitusi :
x + y = 8
2x + 3y = 19
Penyelesaian :
x + y = 8 ... (1)
2x + 3y = 19 ... (2)
x + y = 8
x = 8 - y
Substitusikan x = y - 8 ke dalam persamaan 2
2 (8 - y) + 3y = 19
16 - 2y + 3y = 19
16 + y = 19
y = 3
Substitusikan y = 3 ke dalam persamaan 1
x + 3 = 8
x = 5
Jadi, penyelesaian dari SPLDV tersebut adalah x = 5 dan y = 3
Contoh Soal 2 :
Tentukan penyelesaian dari SPLDV berikut ini dengan menggunakan metode eliminasi :
2x - y = 7
x + 2y = 1
Penyelesaian :
Eliminasi x
2x - y = 7 | x1 => 2x - y = 7 ... (3)
x + 2y = 1 | x2 => 2x - 4y = 2 ... (4)
2x - y = 7
x + 2y = 1 -
-5y = 5
y = -1
Eliminasi y
2x - y = 7 | x2 => 4x - 2y = 14 ... (5)
x + 2y = 1 | x1 => x + 2y = 1 ... (6)
4x - 2y = 14
x - 2y = 1 -
5x = 15
x = 3
Jadi, penyelesaian dari SPLDV tersebut adalah x = 3 dan y = -1
Contoh Soal 3 :
Tentukan penyelesaian dari SPLDV di bawah ini dengan menggunakan metode campuran :
x + y = -5
x - 2y = 5
Penyelesaian :
Eliminasi x
x + y = -5
x - 2y = 5 -
3y = -9
y = -3
Substitusi y
x + (-3) = -5
x = -2
Jadi, penyelesaian dari SPLDV tersebut adalah x = -2 dan y = -3
Contoh Soal 4 :
Umur Shinta 7 tahun lebih muda dari umur Cory. Jumlah umur mereka adalah 43 tahun. Tentukanlah masing-masing umur mereka!
Penyelesaian :
Misalkan umur Shinta = x
umur Cory = y
Maka :
y - x = 7 ... (1)
y + x = 43 ... (2)
y = 7 + x
Substitusikan y = 7 + x ke dalam persamaan 2
7 + x + x = 43
7 + 2x = 43
2x = 36
x = 18
y = 7 + 18 = 25
Jadi, umur Shinta adalah 18 tahun dan umur Cory 25 tahun.
Contoh Soal 5 :
Sebuah halaman rumah memiliki ukuran panjang 8 meter lebih panjang dari lebarnya. Keliling halaman tersebut adalah 44 meter. Tentukan luas halaman tersebut!
Penyelesaian :
Luas halaman = p x l
P = Panjang halaman
L = Lebar halaman
Model matematika :
P = 8 + l
k = 2p + 2l
2 (8 + l) + 2l = 44
16 + 2l + 2l = 44
16 + 4l = 44
4l = 28
l = 7
P = 7 + 8 = 15
Luas = 7 x 15 = 105 m2
Jadi, luas halaman rumah tersebut adalah 105 m2
Demikianlah pembahasan materi mengenai Contoh Soal dan Pembahasan Sistem Persamaan Linear Dua Variabel. Semoga kalian bisa memahami pembahasan dan contoh-contoh soal yang telah diberikan dengan mudah sehingga kalian tidak akan mengalami kesulitan dalam menyelesaikan soal-soal yang berkaitan dengan materi ini.
Selamat belajar dan semoga bermanfaat!
0 komentar:
Posting Komentar