+ Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif -Full Pembahasaanya-Rumus matematika untuk tingkat dasar SD ,SMP ,SMA dan SMK , mungikin sebagian anak merasa sulit untuk mempelajarinya Trik Rumus Singkap MIPA terutama saat kelas 7 pertama. Karena dikelas itu ada peralihan anatara SD dan SMP mungkin sedikit banyaknya rumusnya banyak dilupakan untuk itu berbagai konsep bangun ruang lengkap dan perbandingan segitiga sin cos tan mungkin perlu anda pelajari lagi. Atau mungkin anak harus sedikit mengingat mengenai datar akar aljabar kuadrat aritmatika dan geometri pangkat , nah semua itu akan dibahas dan diulas lagi.
Untuk itu ada baiknya mari kita membuka lagi tentang algoritma rumusnya biar kita tidak kesulitan dalam mengikiti pejaran + Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif -Full Pembahasaanya yang diberikan oleh bapak atau ibu guru. Dan memang bagi yang belum tahu cara mudah atau rumus singkatnya sering kali dibuat kesulitan untuk memahaninya. Padahal rumus itu bisa kita persingkat sesuai dengan istilah-istilah yang biasa kita temukan. Sebagai mana konsep bimbel yang sekarang ini lebih mengedepankan pemahaman logik sederhana sesuai dengan keaadan atau ruang linkup, sehingg anak lebih mudah dan senang dalam mempelajarinya.
Namun tahukan anda jika hal tersebut, mungkin jarang ditemukan di sekolah-sekolah formal yang mengajarkan rumus + Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif -Full Pembahasaanya sesuai dengan cara interaktif murid dan pembingbing. Sering kali kita dibuat bingung karen banyaknya konsep yang jelimet atau rumit yang diajarkan. Nah disini kita akan membahasnya lebih mudah dan simpel, sesuai moto kami Rumus Mudah Dan Murah
Oke langsung saja kita bahasnya + Cara Mudah Menentukan Kelipatan Bilangan Bulat Positif -Full Pembahasaanya pembahasanya biar tidak bertele-tele, dan simaknya dibahwah ini:
Baca juga:
Kelipatan Bilangan Bulat Positif - Ketika kalian ingin menentukan KPK dari sebuah bilangan, maka kalian harus memahami bagaimana cara mencari kelipatan dari sebuah bilangan positif. Materi ini sangat penting untuk dikuasai karena akan sangat berguna di dalam memahami berbagai materi pelajaran matematika lainnya. Oleh sebab itu materi ini sudah diajarkan sejak sekolah dasar. Kali ini Belajar Matematikaku akan menjelaskan kembali materi tersebut, perhatikan baik-baik.
Memahami Konsep Cara Menentukan Kelipatan Bilangan Bulat Positif Apabila x merupakan anggota himpunan bilangan asli dari (a) = 1, 2, 3, 4, 5, 6, 7, ... Maka kelipatan dari x merupakan semua hasil perkalian antara x dengan masing - masing anggota himpunan (a). Sebagai contoh, kelipatan dari 5 adalah sebagai berikut :
5 x 1 = 5
5 x 2 = 10
5 x 3 = 15
5 x 4 = 20
5 x 5 = 25
5 x 6 = 30
5 x 7 = 35
5 x 8 = 40
5 x 9 = 45
5 x 10 = 50, dan seterusnya.
Berdasarkan operasi perkalian di atas, kita bisa mengetahui kelipatan dari bilangan asli 5 adalah 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, ...
Operasi perkalian seperti itu biasanya muncul dalam soal-soal seperti yang ada di bawah ini :
Contoh Soal 1:
Tentukanlah semua bilangan kelipatan dari 6 yang kurang dari 40
Jawaban :
6 x 1 = 6
6 x 2 = 12
6 x 3 = 18
6 x 4 = 24
6 x 5 = 30
6 x 6 = 36
Maka, bilangan kelipatan dari 6 yang kurang dari 40 adalah 6, 12, 18, 24, 30, dan 36.
Contoh Soal 2:
Tentukanlah semua bilangan kelipatan dari 10 yang lebih dari 20 dan kurang dari 80
Jawaban :
10 x 1 = 10
10 x 2 = 20
10 x 3 = 30
10 x 4 = 40
10 x 5 = 50
10 x 6 = 60
10 x 7 = 70
Maka, semua bilangan kelipatan dari 10 yang lebih dari 20 dan kurang dari 80 adalah 30, 40, 50, 60, dan 70.
Contoh Soal 3:
Cari dan tentukanlah seluruh bilangan yang merupakan kelipatan dari 5 dan 7 yang nilainya kurang dari 64!
Jawaban :
Kelipatan dari 5 :
5 x 1 = 5
5 x 2 = 10
5 x 3 = 15
5 x 4 = 20
5 x 5 = 25
5 x 6 = 30
5 x 7 = 35
5 x 8 = 40
5 x 9 = 45
5 x 10 = 50
5 x 11 = 55
5 x 12 = 60
Kelipatan dari 7 :
7 x 1 = 7
7 x 2 = 14
7 x 3 = 21
7 x 4 = 28
7 x 5 = 35
7 x 6 = 42
7 x 7 = 49
7 x 8 = 56
7 x 9 = 63
Sekarang kalian perhatikan dari contoh soal nomor 3 di atas. Perkalian yang diberi warna merah merupakan kelipatan persekutuan dari kedua angka tersebut (5 dan 7) dari situ kita bisa mengetahui bahwa kelipatan persekutuan dari 5 dan 7 adalah 35. Sehingga KPK dari 5 dan 7 adalah 35.
Setelah memahami konsep Menentukan Kelipatan Bilangan Bulat Positif kalian juga akan mengetahui bagaimana cara menentukan Kelipatan Persekutuan Terkecil (KPK) dari beberapa bilangan.
Selamat belajar dan semoga bermanfaat!
0 komentar:
Posting Komentar